Lessons from Current Technologies: Synthetic Biology

Christina Smolke, Stanford University & Antheia

NExTRAC Meeting: Identifying an "emerging" biotechnology
December 5-6, 2019
National Institutes of Health

Tools-driven revolution in engineering biology

Learning-by-building revolution in bioscience

Tools-driven revolution in engineering biology

Synthesis: interconversion of bits and bases

Synthesis: interconversion of bits and bases

4. Networked

& lineage

agnostic

c/o D. Endy (Stanford University)

8000B

Synthesis: interconversion of bits and bases

Genetic information & genetic material are increasingly interconvertible

Productivity in DNA Sequencing and Synthesis

Ex: New function from read-write of bits

Plant hosts

Sequencing

Transcriptome sequences

Filters

Biochemical hypothesis
Enzyme class

Refined
candidate
set

**So. AF 108 43 8 PSO. AF 108 8

Bits

R/W capabilities advance discovery of unique enzymes from publicly available sequence databases

Galanie, et al. 2015. Science. 12: 989-94

Standards: coordinating work across locations

iGEM engages teams of ~6,000 students, across 40+ countries annually

Standards enable reliable reuse of objects, which requires reliable reuse of measurements of performance and models

Ex: Sensor standardization

Standardizing sensor architecture and measurement enables generation of 100-1000's sensors that work off-theshelf across many systems

Townshend, et al. 2019. In review.

Binding

Abstraction: managing increasing complexity

Synthesis

Decoupling of design & fabrication, leading to CAD and EDA.

Standardization

ON A SYSTEM OF SCREW THREADS AND NUTS.

Refined genetic components supporting "off the shelf" reuse.

'flibee"

Abstraction

Engineered simplicity enabling many component systems.

8-bit counter

Systems = One or more devices encoding a human defined function(s).

Devices = One or more parts encoding a human defined function(s).

Abstraction barrier! Do not cross!

Parts = Basic biological functions encoded via molecules.

Abstraction barrier! Do not cross!

An abstraction hierarchy supports 'compiling' down to primary sequence through a series of layers of functional power

TATAGGGAGA

DNA = Material encoding molecules

Ex: Abstraction of metabolism

Ex: Abstraction of metabolism

Defining functional metabolic modules enables rapid mix & match of complex biosynthetic pathway assembly and diversification of accessible chemistry

Improving the engineering cycle (for biology)

Improving the engineering cycle (for biology)

Current Challenges

Although DNA synthesis has gotten 100-fold cheaper, it is high latency, length limited & ROW is starting to lead

Although read-write (sequencing-synthesis) capacities are in place, composition (what & how) lags far behind

Synthesis is more advanced than Standards & Abstractions

It is difficult to make fundamental advances in workflow, because everyone emphasizes applications

Applications are still expensive and risky... who will control / own the technology and access to it

Those leading technology development, historically lead governance... who will be world leading in syn bio?

What emerging applications are enabled by Synthetic Biology?

Cracking the code on building molecules

Current: reliance on & limited by the natural world

Near future: access to full chemical space

Future: on demand, distributed and/or in situ manufacturing

Editing genetic information

Matter

Information / Analysis

TTAGCCAAGCAGATGGTAGCTTTTGCT CTTGCAAGTATGGTCAACGAATTCAAA TGGGGTACGCCATTCATCACGATCCAA ATGTTTTCCAGCTCCATACAAGTTCAT GCCTGAAAGATTTTTGAAGGGTGTTAA CTCCGATGGTAGATACGGTGATATTAA GTTGAATTGGCAAAACAAATGGCTACC ATGTATTCCGCTGCCGTTGAAGTTATT TCTAAAGAAACCATTAAGCCAAAGACC CCAACCTTGTACCATTTCAAGAATTTCA ACTTGTCCTTGTTGGACCAATATTACC CACCATTCGTCCCATTGTCCCAATTATT GCCATCTGAAGTTGTTTCTGCTTGCGT TGCTAAAGAAGCTCATGATTTGGATGT CCGTTATGAAGTCTACTTTGGCTGGTT TTTTGCCAGTTGTTAACCATGCTGTTAA CTTGAGAAAGAAGATGTACCCACCATT GCAAGATGTTTCTTTCGGTAACTTGTC TTTGTCTGTTACTGCTTTGTTGCCTAAG TTTGAATTGCACTTGTCCGAAATCTTG **GAATTGATTTGATTCTATTCATATAT** ATATATATATATGTGGATATATATA TGTGGTTTCTGCTGATTCATAGTTAGAA TTTGAGTTATGCAAATTAGAAACTATGT AATGTAACTCTATTTAGGTTCAGCAGCT ATTTTAGGCTTAGCTTACTCTCACCAAT TTTATACTGATGAACTTATGTGCTTA CCTCCGGAAATTTTACAGAGGACATAT GTCATCTGCAGACTTGAGTACAAGGGT GATGATGCGGACATTCTATCTGCTTAT GCAATAGATCCCACCTCCATACAAGTA

Editors

RNA silencing

Synthesis

CRISPR/Cas

Bits

Programming living therapies

