

Value-Centered R&D

William B. Rouse January 14, 2013

Overview

- Value Philosophy
- Principles for Value-Centered R&D
 - Characterizing Value
 - Assessing Value
 - Managing Value
- Organizational (Re)Design
- Observations

Value Philosophy

- Value focuses on organizational outputs (or outcomes), rather than inputs.
- Value relates to benefits of outcomes, rather than outcomes themselves.
- Value implies relevant, usable, and useful outcomes.

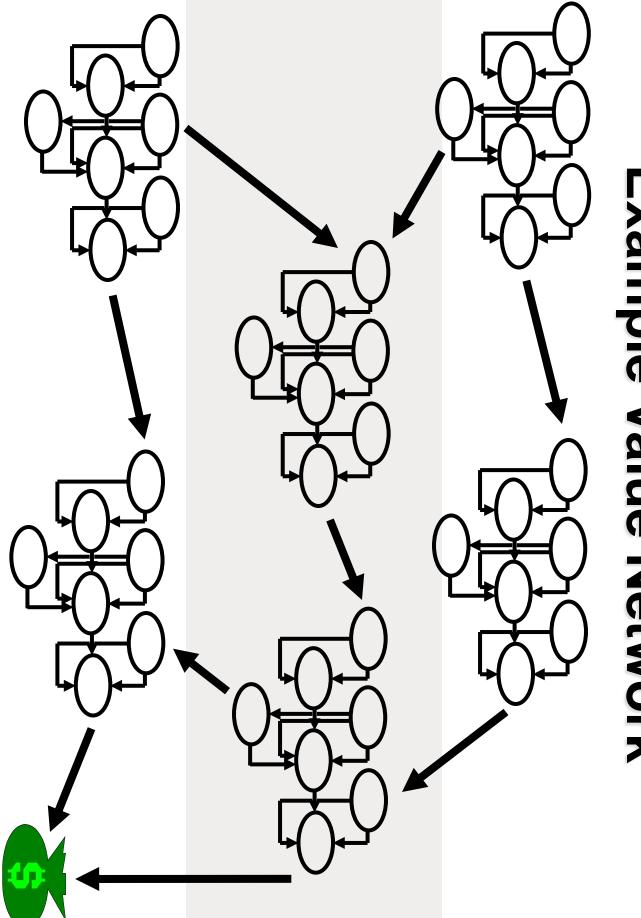
Characterizing Value

- 1) Value is created in R&D organizations by providing "technology options" for meeting contingent needs of the enterprise.
- 2) R&D organizations provide a primary means for enterprises to manage uncertainty by generating options for addressing contingent needs.
- 3) A central challenge for R&D organizations is to create a portfolio of viable options; whether or not options are exercised is an enterprise challenge.

Example Option-Based Valuations of Technology Investments

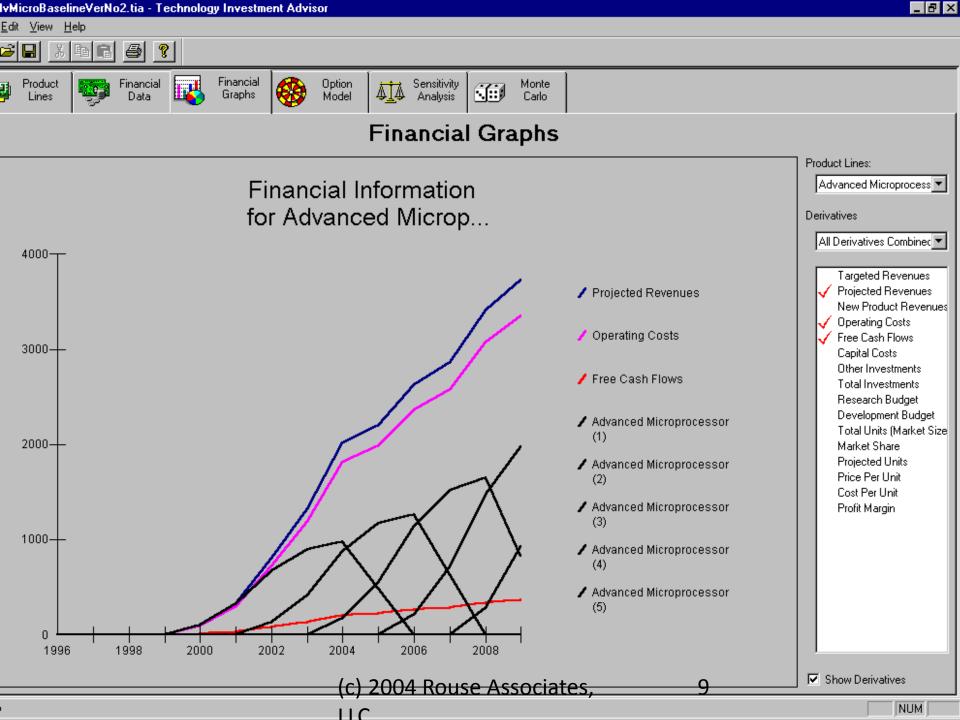
Technology	Option Purchase	Option Exercise	Net Option Value	
Aircraft (manufacturing)	R&D	Deploy Improvements	8	
Aircraft (unmanned)	R&D	Deploy System	137	
Auto Radar	Run Business	Expand Offerings	133	
Batteries (lithium ion)	R&D	License Technology	215	
Batteries (lithium polymer)	R&D	Acquire Capacity	552	

Total Net Option Value = \$4.2 Billion


Optical Multiplexers	R&D	Expand Capacity	488
Optical Switches	Run Business	Expand Offerings	619
Security Software	Run Business	Add Market Channels	267
Semiconductors (amplifiers)	Invest in Capacity	Expand Offerings	431
Semiconductors (graphics)	R&D	Initiate Offering	99
Semiconductors (memory)	R&D	Initiate Offering	546
Wireless LAN	Run Business	R&D	191

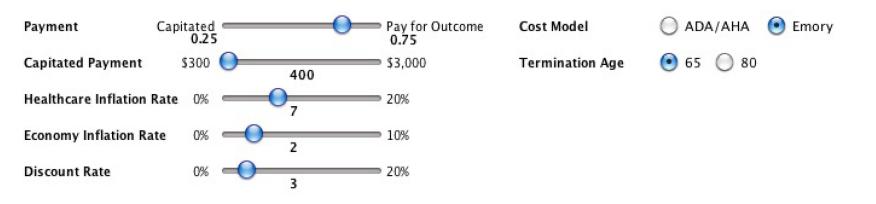
Assessing Value

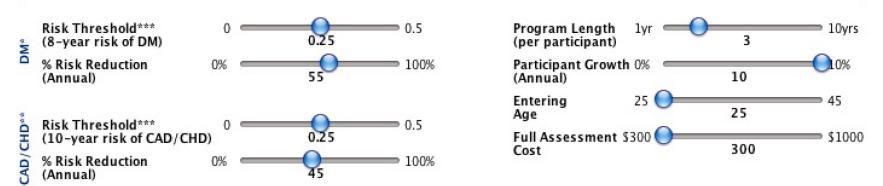
- 4) Value streams, or value networks, provide a means for representing value flow and assessing the value of options created.
- 5) Valuation of R&D investments can be addressed by assessing the value of the options created in the value network.


Example Value Network

PROJECTING VALUE FLOW

- Projections based on baseline on market penetration and product life cycles
- Projections based on organizational simulations of healthcare delivery
- Projections based on user behaviors in interactive online games





Ecosystem Level

Organization Level

^{*} DM = Diabetes Mellitus

Run

^{**} CAD = Coronary Artery Disease, CHD = Coronary Heart Disease

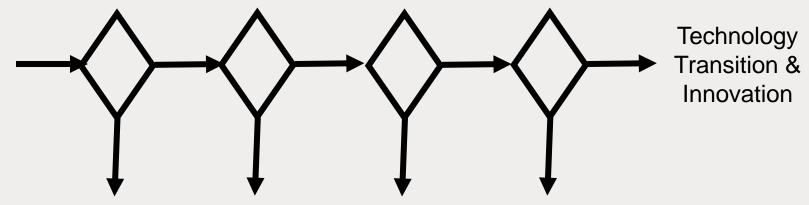
^{***} If a participant's risk is higher than the specified risk threshold, he/she will be classfied as a high-risk participant.

© Copyright 2007 Tennenbaum Institute, Georgia Institute of Technology. All Rights Reserved. Disclaimer | Privacy Statement | Credits | Contact Us

Multi-Stage R&D Management

- Multi-Stage Value Stream
- R&D World Organizational Simulation
- Multi-Attribute Decision Model

Multi-Stage Value Stream


Initial Project Decision

Exploratory
Development
Decision

Advanced Development Decision

Technology
Transition
Decision

R&D World for Forest Products

Input Factors										Responses (in \$1,000s)					
	Valuation Vola- Budget Allocation Across			Budget	Arrival	Delay	Total	# Proj	Total	Profit (TDV -	Yield				
		tility		Sta	ges		Varia	Rate	Factor	Deployed		Expend.	TE)	(TDV/	
			2	3	4	6	bility	Var.		Value				TE)	
1	Stage-Gate	0.60	0.115	0.195	0.494	0.196	0.10	0.10	0.0	\$1,788,389	232	\$703,993	\$1,084,396	2.54	
2	NPV	0.60	0.115	0.195	0.494	0.196	0.10	0.10	0.0	1,861,890	218	667,799	1,194,091	2.79	
3	Options	0.60	0.115	0.195	0.494	0.196	0.10	0.10	0.0	1,815,999	201	659,004	1,156,995	2.76	
4	NPV	0.60	0.150	0.220	0.469	0.161	0.10	0.10	0.0	1.878.079	209	747.365	1.130.714	2.51	

For 16 very reasonable allocation decision policies, profits range from (\$254,000,000) to \$1,720,616,000.

1	O Stage-Gate	0.60	0.115	0.195	0.494	0.196	0.10	0.10	0.0	1,788,389	232	703,993	1,084,396	2.54
1	1 Stage-Gate	0.60	0.200	0.400	0.300	0.100	0.10	0.10	1.0	1,394,330	114	695,761	698,569	2.00
1	2 Options	1.00	0.300	0.150	0.250	0.300	0.90	0.80	0.5	2,134,936	128	586,120	1,548,816	3.64
1	3 NPV	0.10	0.200	0.200	0.350	0.250	0.10	0.10	0.0	1,439,508	186	679,621	759,887	2.12
1	4 Options	1.00	0.200	0.200	0.350	0.250	0.10	0.10	0.0	2,378,322	156	657,506	1,720,816	3.62
1	5 Stage-Gate	1.00	0.100	0.400	0.400	0.100	1.00	0.10	0.0	1,555,939	138	582,051	973,888	2.67
1	6 Options	0.90	0.400	0.400	0.050	0.150	0.50	0.70	0.0	353,437	22	607,469	(254,032)	0.58

Multi-Attribute Model

Decision Criteria	Idea → Concept Paper	Concept Paper → Initial Project	Initial Project → Exploratory Development	Exploratory Development → Advanced Development	Advanced Development → Technology Transition
Strategic Fit	NA	Possible	Definite	Priority	Programmed
Payoff	NA	Imaginable	Articulated	Projected	Demonstrated
Schedule	NA	One-year deliverables	Multi-year sequence of deliverables	Multi-year sequence of demonstrations	Technology transition plan
Resources	No budget	Discretionary budget available	Budget scoped appropriately	Costs/benefits projected	Costs/benefits assessed
Technical Risk	NA	NA	Anticipated	Managed	Minimized
Application Risk	NA	NA	NA	Anticipated	Managed
Personnel	Interest & commitment	Commitment & credibility	Commitment & credibility	Credibility & availability	Credibility & availability
Competencies	Desirable & obtainable	Desirable & developing	Available internally & externally	Available internally & externally	Demonstrated & available

Managing Value

- Decision making processes -- governance are central in managing the flow of value.
- Organizational structure affects value flow, with significant differences between hierarchical vs. heterarchical structures.
- 8) Individual and team affiliations and identities affect value flow; dovetailing processes with disciplines is essential.

Managing Value – Cont.

- Champions play important, yet subtle, roles in value flow; supporting champions is necessary but not sufficient for success.
- 10) Incentives and rewards affect value flow; aligning these systems with value maximization is critical.

Organizational (Re)Design

Principle	Key Concept	"As Is"	"To Be"		
1	Technology Options		Drograma to		
2	Uncertainty Management	Strengths,			
3	Portfolio of Options	Weaknesses &	Programs to Remediate Deficiencies		
4	Value Stream/Networks	Deficiencies			
5	Option-Based Valuation				
6	Decision Making Processes				
7	Organizational Structure				
8	Individuals & Teams				
9	Champions				
10	Incentives & Rewards				

Observations Related to Healthcare Delivery

- There is an inherent conflict between payers and providers, especially when one organization pays and another organization receives the benefits.
- Alternative payment mechanisms -- fee for service, capitation, pay for outcomes – have enormous implications for how best to organize delivery.
- Appropriate framing of "the system" is critical to understanding sources of problems and improving outcomes – what seem to be exogenous variables may be sources of great leverage.

Summary

- Value Philosophy
- Principles for Value-Centered R&D
 - Characterizing Value
 - Assessing Value
 - Managing Value
- Organizational (Re)Design
- Observations

