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ID: 1764 

Submit date: 10/5/2021 

I am responding to this RFI: On behalf of an organization 

Name: Ryan Dittamore 

Name of Organization: Cordance Medical 

Type of Organization: Industry (Biotech/Device/Pharmaceutical Company) 

Role: Investigator/Researcher 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

Neuro-oncology 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 
The incidence of brain metastasis continues to rise as we improve the therapeutic efficacy of agents 
in breast, lung, melanoma, kidney, and other solid tumor cancers. Collectively, with GBM and other 
gliomas, the ability to measure and track malignant brain tumor progression, MRD, and genomic 
heterogeneity is not clinically viable in patients. The last 5 years have seen strong pre-clincial data in 
the ability to open the blood-brain barrier (BBB) utilizing focused ultrasound and microbubbles to 
improve drug delivery across a number of small and large molecule therapeutics. This has led to 
multiple clinical trials underway in oncology, Alzheimer's and Parkinson's disease. One of these 
studies (NCT03616860) embedded liquid biopsy blood draws before and after opening the BBB in 
patients treated for GBM. The results demonstrated a 2.6X increase in cfDNA after opening the BBB, 
and a correlation of the cfDNA increase related to the tumor size & BBB opening, further the 
methylation analysis supported that the cfDNA visualized was malignant in nature (DOI: 
10.1093/neuonc/noab057). Given the lack of clinical tissue or liquid biopsy options available in 
malignant brain tumors, the ability to non-invasively open the BBB provides a significant clinical 
opportunity to improve clinical decision making and therapeutic options for hundreds of thousands 
of US patients with gliomas, GBMs, or brain metastasis. Additionally, novel medical devices, such as 
our own Cordance device, which is painless, non-invasive, and is designed for a 30min outpatient 
BBB opening can enable a future where liquid biopsies may have a role in malignant brain tumors. 
To do so, clinical studies designed around liquid biopsy (rather than opportunistic studies) need to 
be developed and sponsored. Further exploration of integration and analysis between brain tumor 
tissue genomics, liquid biopsy, and imaging modalities needs investment. Finally, investment into 
studies and devices to understand the pre-analytical approaches to maximize circulating genomic 
biomarkers results. We look forward to an opportunity to the NIH taking a leadership role in 
expanding NGS towards patients with malignant brain tumors. 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 



        
 

  

4. Any general comments related to critical resource gaps and opportunities to support NGS test 
development and validation (limit: 8000 characters) 

Email: ryan.dittamore@cordancemedical.com 

mailto:ryan.dittamore@cordancemedical.com


  

  

    

  

  

  
 

 

     
 

  
  

  
  

   
 

       
 

 
   

    

   
 
 

  
  

        
 

 
 

 

ID: 1768 

Submit date: 2021-10-15 

I am responding to this RFI: On behalf of myself 

Role: Other 

Role-Other: USG Contractor 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

Infectious Diseases 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

Using modeling data methods that are more inclusive, geographically and demographically, of diverse 
populations to reduce disparities. Pak, T. R., & Kasarskis, A. (2015). How next-generation sequencing and 
multiscale data analysis will transform infectious disease management. Clinical infectious diseases : an 
official publication of the Infectious Diseases Society of America, 61(11), 1695–1702. 
https://doi.org/10.1093/cid/civ670 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

The use of AI/ML will be a very big leap forward if done with the NGS mission outcomes in mind. Pak, T. 
R., & Kasarskis, A. (2015). How next-generation sequencing and multiscale data analysis will transform 
infectious disease management. Clinical infectious diseases : an official publication of the Infectious 
Diseases Society of America, 61(11), 1695–1702. https://doi.org/10.1093/cid/civ670 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 

Utilizing partnerships with academic, community, and international stakeholders to develop standards 
and best practices workshops. Pak, T. R., & Kasarskis, A. (2015). How next-generation sequencing and 
multiscale data analysis will transform infectious disease management. Clinical infectious diseases : an 
official publication of the Infectious Diseases Society of America, 61(11), 1695–1702. 
https://doi.org/10.1093/cid/civ670 

4. Any general comments related to critical resource gaps and opportunities to support NGS test 
development and validation (limit: 8000 characters) 

More training and funding opportunities on data literacy at all levels is fundamentally instrumental for 
program support overall 

https://doi.org/10.1093/cid/civ670
https://doi.org/10.1093/cid/civ670
https://doi.org/10.1093/cid/civ670


  

  

    

  

   

  

  

  

  
 

     
 

  
   

    
 

   
  

    
   

    
    

    
   

   
  

  
 

   
  

  
 

    
   

  
    

   
 

ID: 1770 

Submit date: 2021-10-25 

I am responding to this RFI: On behalf of an organization 

Name: Nathan Carrington 

Name of Organization: Roche 

Type of Organization: Industry (Biotech/Device/Pharmaceutical Company) 

Role: Other 

Role-Other: Regulatory Policy 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

Roche recognizes the existing challenges related to NGS standardization and harmonization, and we 
support the concepts NIH and FDA have described here. Below, we outline some key aspects that are 
important to keep in mind when considering the practical implementation of the topics proposed in this 
section: 

• We agree that the “ground truth” gap is frequently a limiting factor impeding high-quality research, 
development, validation, and regulatory science and that representative physical reference samples 
will aid in closing this gap. However, transparency will be needed with respect to the methods by 
which ground truth has been established with these samples and any potential biases and/or 
limitations that exist. It is important to avoid technology bias and ensure consistency across 
technological platforms when establishing ground truth or a gold standard. Further, cutting-edge 
technology (such as machine learning techniques) may find new genomic variants that the previous 
gold standard was unable to identify. Gold standards can be hard to determine due to 
heterozygosity and sampling biases and should therefore be distributional and connected with 
externally measured population statistics to ensure in-distribution comparisons. Such information 
will enable transparency and provide users performing ground truth comparisons with greater 
insights. 

• Tools for data analysis, interpretation, and comparative assessments need to be flexible across 
platforms and, similar to the physical reference samples, provide transparency regarding limitations 
and biases. Further, consideration should be given regarding how such tools may interface with 
purpose-built tools established by NGS developers. 

• Standardization with respect to infrastructure and genomic data management will facilitate data 
access and sharing. When establishing such an infrastructure, it is important to consider different 
formats and the ease of mapping between them. Pre-determined guidelines with appropriate 
policies/controls may be used that enable different data providers to exchange information on a 
pre-defined format. Incentivization strategies may be considered that encourage stakeholders to 
share data and solutions. 



   
 

  
   

   
    

   
     

     
    

    

 
   

   
        

  

    
        

 

   
  

 

 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

Roche agrees that access to robust, high-quality datasets and related information is one of the most 
significant challenges facing the routine use of AI/ML in research and development, including for the 
purposes of interpreting NGS data and multi-domain data. AI/ML techniques can provide innovative 
insights and solutions through the analysis of vast amounts of data, but this can only be achieved if the 
data are accessible. Current fragmentation in healthcare systems and the lack of use of standardized 
nomenclature and infrastructure prevents access to and use of large amounts of clinical data that could 
be used to advance patient and public health. Efforts are needed to ensure that the appropriate data 
standardization practices and infrastructure exist to enable unambiguous identification of health 
information within an interconnected healthcare ecosystem. Efforts such as FDA’s SHIELD project 
(https://mdic.org/program/systemic-harmonization-and-interoperability-enhancement-for-lab-data-
shield/) are critical for improving semantic interoperability and need greater recognition and 
implementation by laboratories, healthcare institutions, and the clinical community. We encourage NIH 
and FDA to consider mechanisms they can employ to ensure more widespread adoption of efforts such 
as SHIELD that will contribute to semantic interoperability of laboratory data, including NGS data and 
multi-domain data, that can be leveraged for AI/ML applications. 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 
4. Any general comments related to critical resource gaps and opportunities to support NGS test 

development and validation (limit: 8000 characters) 

Roche appreciates this information request from NIH and FDA and appreciates their consideration of our 
provided comments. 

Email: nate.carrington@roche.com 

https://mdic.org/program/systemic-harmonization-and-interoperability-enhancement-for-lab-data-shield/
https://mdic.org/program/systemic-harmonization-and-interoperability-enhancement-for-lab-data-shield/
mailto:nate.carrington@roche.com


  

  

    

   

   

  

   

  
 

  

     
 

 

   
 

 

    

 

        
 

   

  

 

ID: 1772 

Submit date: 10/27/2021 

I am responding to this RFI: On behalf of an organization 

Name: Sasan Amini Ph.D. 

Name of Organization: Clear Labs 

Type of Organization: Industry (Biotech/Device/Pharmaceutical Company) 

Role: Organizational Official 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

Next generation sequencing tests for infectious disease 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

Please see the attached PDF file. 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

Please see the attached PDF file. 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 

Please see the attached PDF file. 

4. Any general comments related to critical resource gaps and opportunities to support NGS test 
development and validation (limit: 8000 characters) 

Uploaded File: https://osp.od.nih.gov/wp-content/uploads/rfi2021_ngs/uploads/IrJDHBxUAJ.pdf 

Description: Comments submitted in response to the RFI. 

Email: jennifer@ipolicysolutions.com 

https://osp.od.nih.gov/wp-content/uploads/rfi2021_ngs/uploads/IrJDHBxUAJ.pdf
mailto:jennifer@ipolicysolutions.com


  

  

    

  

   

   

  

  

  
 

     
 

    
   

   
    

     
   

  
  

   
 

  
     

 
   

   
   

    
    

    
   

  
  

  
 

   
    

  

ID: 1773 

Submit date: 10/29/2021 

I am responding to this RFI: On behalf of an organization 

Name: Daniela Kucz 

Name of Organization: Palantir Technologies Inc. 

Type of Organization: Other 

Type of Organization-Other: Technology Company 

Role: Member of the Public 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

Palantir Technologies Inc. ("Palantir Technologies," collectively "we" or "our") is grateful to the NIH and 
FDA for the opportunity to provide information about existing gaps that are impeding Next Generation 
Sequencing (NGS) test and radiology tool development, validation, and data interpretation, including 
AI/ML techniques. Based on our experience with comparable efforts at both NIH and FDA, the biggest 
challenge to NGS test/radiology tool development and validation is the absence of a FAIR data 
infrastructure for clinical and translational research that reduces the burden of data sharing, integration, 
access, and use. The infrastructure should: 1. Enable multi-modal data integration and support large 
data scale 2. Facilitate resolution of data quality issues 3. Support data harmonization into an intuitive 
and dynamic data model 4. Protect data through technology-backed (permissions/access) controls 5. 
Provide users with rapid access to data and integrated analytical tools 6. Promote reproducibility by 
capturing user behavior and all versions of data and logic—back to the source 7. Improve data quality, 
breadth, and depth by connecting agencies to the point of care in a closed loop system We share lessons 
learned below with a focus on capabilities required for an effective and FAIR infrastructure (including 
tools). 1. Multi-Modal Data Integration. NIH and FDA require an infrastructure that can securely and 
directly sync structured and unstructured data inputs from hundreds of diverse data sources, regardless 
of data type (omic, EHR, imaging, etc.), scale, schema, or format—increasing the likelihood that users 
can access a sample size large enough to have sufficient statistical power to draw significant conclusions 
about relevant patient subsets, and to build cohorts representative of the U.S. population (including 
providing insight on underrepresented ethnic/racial groups). The sample size should also have sufficient 
generalizability. Further, to encourage data sharing and remove the burden on organizations 
contributing data, the infrastructure should be able to directly connect to source systems—as well as 
privacy preserving record linkage (PPRL) solutions—via bidirectional open APIs (including a FHIR-enabled 
API). Direct connection will not only remove reliance on intermediaries that aggregate and manipulate 
data and improve speed of access to and transparency into real-world data, but also offers more control 
and oversight to data owners (e.g., NGS test manufacturers who may have IP concerns regarding data 
sharing). Interoperability with other data commons or repositories via these open APIs will also reduce 
the likelihood of data duplication and the risk of overfitting an AI/ML model. Finally, the infrastructure 



   
   

   
    

  
  

 
  

     
 

  
     

 
  

  
  

    
  

   
 

     
   

   
    

    
   

    
       

  
     

 
   

  
    

    
  

    
  

  
   

  
  

  
 

should easily accommodate new connections. 2. Data Quality Resolution. Real-world data is prone to 
gaps and inaccuracies, and requires continuous data quality identification, resolution, and validation. 
Traditionally, these processes are extremely manual and labor-intensive. NIH and FDA require an 
infrastructure with both code-based and point-and-click pipeline management tools, which facilitate 
close collaboration between data scientists and data subject matter experts (SMEs), and capabilities that 
enable users to pull data and propagate to downstream user artifacts on a near-real-time basis. To 
ensure data accuracy downstream, the NIH and FDA infrastructure should have automatic gating at the 
data connection and ingestion phase. Further, the infrastructure should include configurable templated 
checks on incoming data and metadata, which require validation before data can continue through a 
transformation pipeline. This decreases the chance of stale data, schema errors, and transmission issues 
even as data scale and complexity increase. The data infrastructure should also support data de-
identification pipelines to protect data downstream. Finally, the NIH and FDA infrastructure should have 
a restricted central environment for data administrators, who can compare data quality across individual 
data providers prior to releasing it to authorized users. 3. Dynamic Data Harmonization. Data is only as 
useful as it is accessible to users, and NIH and FDA require an infrastructure that can link and bring 
together multi-modal data in an intuitive way—including facilitating PPRL-based linkage. A dynamic data 
model management system facilitates a broad range of users to engage with the same data foundation 
in common sense terms they can understand (e.g., "genome" or "patient")—empowering technical and 
non-technical SMEs with intuitive, data-driven tools and workflows. This data model management 
system should facilitate data characterization and standardization while maintaining interoperability 
between standards and data models (such as OMOP, TriNetX, PCORnet, or ACT/i2b2), given the lack of 
community consensus on data standards. 4. Configurable Data Access Controls for Compliance with 
Policies and Regulations. NIH and FDA require an infrastructure that can provision access to data for 
thousands of users across organizations and teams on a project-by-project basis. Further, this 
infrastructure should be backed by, and adhere to, all relevant policies to promote responsible data 
sharing and data use. To facilitate appropriate data access based on a user’s intended operations, the 
infrastructure should feature a technology-backed data use and download request process that can be 
approved or denied upon human review. To promote data security and privacy across the infrastructure, 
all policies should propagate throughout without exception and be backed by audit logs verifying user 
behavior. 5. Rapid User Access to Workspaces with Both Data and Analytical Tools. The NIH and FDA 
infrastructure should provide rapid access to high-quality data—including reference datasets easily 
locatable via catalogs and/or tags. Additionally, this infrastructure should include a diverse selection of 
analytical tools—including for harmonization, analysis, interpretation, and comparative assessments— 
that will help researchers gain insight from a robust data foundation. To enable users with different 
skillsets and needs, the infrastructure should offer both natively integrated analytical tools and 
interoperability with third-party tools (e.g., open-source or custom-built). In particular, the native 
tooling should include: - Point-and-click analysis tools that allow less technical users to cohort and 
analyze data across genomic and clinical characteristics, generate publication-ready visualizations, and 
share their work and outputs with tools such as multi-modal dashboards. - Code-based analysis tools 
that allow users to use the latest R and Python libraries imported from GitHub and Conda to perform 
large-scale analysis backed by a distributed compute framework. To support reuse of work, the 
infrastructure should enable users to generate templatized code-based pipelines to allow others to 
perform these same analyses without code. - An AI/ML model management system to support more 
complex workflows (see Topic 2). 6. Validation and Reproducibility of Data and Analysis. When bringing 



    
  

     
  

   
  

  
   
      

   
 

     
   

    
   

    
    

   
     

   
   

    
 

    
 

 
   

  
   

  
  

  
    
      

    
     

    
  

    
    

   
   

together complex data across a wide variety of sources, transparency and traceability are critical to 
fostering user trust, identifying attribution, and promoting the use—and reuse—of data by authorized 
users. Transparency and traceability enable users to understand and validate the origins of data and 
analysis, when it was last updated, and what transformations occurred—supporting a more efficient 
peer review process. Should any data quality or analytical issues arise, these features enable rapid root 
cause identification and subsequent resolution. The NIH and FDA infrastructure should therefore 
preserve transparency at all levels by tracking all actions, changes, and versions—enabling branching of 
not just logic but data. These capabilities enable: A. Administrators to centrally govern data and access 
controls, and audit user behavior when needed (assuming proper permissions) B. Users to trace data 
back to the source, understand work performed by others, revisit historical analyses, and test their own 
hypotheses and analyses in a private "sandbox" environment Once researchers have created code, 
datasets, or models that could be useful to other projects, they should have the ability to publish these 
to a centralized "knowledge store" that can support other projects. 7. Closed Loop System. Truly 
understanding patients requires leveraging information collected about them at the point of care. This is 
made challenging by the business and legal complexity of collaborating with health care organizations 
(HCOs) who house patient data to use it for secondary analyses. The NIH and FDA infrastructure should 
therefore streamline the process of collaborating with HCOs by: - Allowing HCOs to retain control over 
their data even as NIH and FDA bring their models and tools to that data, rather than the data egressing 
HCO systems - Continuously updating their datasets by maintaining provenance back to HCOs’ point of 
care systems - Richly contextualizing feedback from NIH and FDA on data quality, breadth, and depth 
back to HCOs, who can then add existing data or even generate new data from biobanks in real time 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

To facilitate effective application of AI/ML to the interpretation of NGS, radiology, and other multi-
domain data, we propose the following capabilities that will enable access to a powerful, trustworthy, 
and secure end-to-end environment for AI/ML application. Elements of this vision are already a reality at 
NIH and other agencies (see our response to Topic 3), and NIH and FDA should evaluate the feasibility 
and sustainability of leveraging existing resources. 1. Ability to curate, annotate, and pre-process data. 
As stated in response to Topic 1, data and the associated data infrastructure are the greatest 
determinants of an AI/ML effort’s success or failure. AI/ML requires large, representative populations 
and high-quality curated and annotated data to enable the building of a generalizable model, which in 
turn requires the right data infrastructure. The NIH and FDA infrastructure should empower researchers 
to: - Easily curate and/or discover potential training datasets relevant to their use case through point-
and-click and code-based curation tools and a transparent data catalog, as well as review metrics and 
metadata on those datasets - Collaborate on training data sets (including dataset annotation) in a user-
friendly interface without compromising data lineage, integrity, or security - Facilitate data 
sequestration and cohorting to ensure the desired model is run on an appropriate selection of data -
Branch a data set, modify it, and make those modifications available to the broader research community 
in a fully secure and transparent way. Branching datasets supports data sequestration for AI/ML, and 
users can discover, record, and mitigate bias and other data issues for the entire research community -
Leverage external AI/ML tooling on top of the data asset through bidirectional open APIs and standard 
modeling libraries - Granularly secure data with low-friction, built-in access control tooling. Not all 
datasets should be fully accessible to all users (e.g., to protect sensitive information) and oversight is 



   
 

  

   
  

 
 

   
     

    
    

 
  

   
  

 
 

   
    

 

    

  
 

   
    

  
  

  

  
  

     
 

  
 

     
    

 
    

 
  

  

required to assess the potential consequences of combining data sets 2. Ability to train, test, and retrain 
adaptive AI/ML models. The NIH and FDA infrastructure should provide researchers with the 
development environment, computational power, and tools required to train adaptive AI/ML models in 
a streamlined manner, or enable them to use their own tools, connected via open APIs. Users should be 
able to easily capture and share their work products (libraries, models, data modifications) back to the 
infrastructure, enabling knowledge to compound over time. A technical infrastructure designed to 
capture and share knowledge enables appropriate contextualization of existing data and research for 
faster onboarding to and use of the AI/ML environment. 3. Ability to monitor and evaluate real-world 
AI/ML model performance within the NIH and FDA infrastructure. Researchers should be able to 
compare models to baseline standards, view and capture metrics that show their AI/ML models’ 
performance and capture performance against different evaluation datasets. Researchers should have 
the option to make this performance data discoverable so that others can learn from their work, while 
also providing provenance and securing their data so that it is only accessible by those with appropriate 
permissions. 4. Ability to contribute back to the NIH and FDA infrastructure. User friendly tools should 
be provided that incentivize researchers to contribute back to the broader knowledge base via a 
centralized and easily accessible platform. For example, researchers could make new and improved data 
pipelines, data annotations, model templates, analysis frameworks, etc. available to fellow researchers. 
Incentives such as additional compute allocations that encourage contributing knowledge back to the 
scientific community would compound the collective knowledge of the NIH and FDA infrastructure over 
time and streamline future research efforts. In turn, this ability to broaden the knowledge base will 
provide richer data sources to serve as the foundation for AI/ML applications. 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 

N3C Data Enclave: One existing resource that fulfills the capabilities outlined above is the NIH National 
Center for Advanced Translational Sciences-backed (NCATS) National COVID Cohort Collaborative (N3C) 
Data Enclave, which was mentioned during the NIH and FDA virtual workshop as a viable repository to 
fill resource gaps. The N3C Data Enclave is backed by the Palantir Gotham Platform configured with 
Foundry ("Palantir Foundry"). Access to the N3C Data Enclave can be requested here: 
https://covid.cd2h.org/enclave. While the scope of research supported by the N3C Data Enclave is 
currently limited to COVID-19, the Enclave is dynamic—containing EHR data from across 65+ academic 
medical institutions for more than 8M patients (including 2.9M COVID-19-positive patients), across 9B 
rows of data. The COVID-19 data asset in N3C exclusively contains SME-validated data, enabling 
researchers to devote 100% of their time to conducting research instead of spending time doing data 
cleaning and harmonization. While the Enclave can support a wide variety of biomedical and other data 
types (including omics data), current data types include patient clinical data and outcomes (including lab 
results, medications, procedures, and visits) at a high level of characterization (including summary 
statistics, cohorts, and individual data) as well as DICOM imaging. It includes a library of 500+ reference 
sets for research concepts (e.g., lab measurements for a particular test or diagnoses for a particular 
condition), which have undergone rigorous review by leading clinicians. Enclave data continues to be 
expanded and updated on a weekly basis. Additionally, a proof-of-concept PPRL to TCIA has been 
completed and PPRL linkages to claims data as well as mortality data are in progress. Additionally, PPRL 
linkage to MIDRC radiology data is anticipated. Access Model. The N3C Data Enclave access model is 
purpose-based; namely, researchers receive access to data according to their research needs instead of 
receiving blanket access at a dataset level. Upon being granted access to the N3C Data Enclave, users— 

https://covid.cd2h.org/enclave


    
  

  
  

    
 

   
  

   
   

   
  

   
   

   
      

      
  

 
       

     
     

 
     

 
 

 
 

   
  

    
   

  
 

    
 

    
    

 
    

    
     

logging in using their institutional credentials, as made possible by Palantir Foundry’s integration with 
institutional authentication systems—must request access to specific N3C datasets at a given tier of 
information (e.g., synthetic, de-identified Safe Harbor, or HIPAA Limited Dataset data). Users make the 
request and provide justification using an in-platform configured form. The N3C Data Access Committee 
then receives automated notice of each request submission and approves or denies the request in the 
platform. Palantir Foundry powers true purpose-based access—and should the researcher require this 
same data for another project, they must submit another access request. Data Use. The N3C Data 
Enclave could support additional disease areas beyond COVID-19 if authorized to do so by NCATS and 
data contributors. Critically, Palantir Foundry's purpose-based access controls allow NCATS to enforce 
and audit conformance with Data Use Agreements. NIDAP: Another existing resource offering 
capabilities to close existing gaps is the NIH National Cancer Institute (NCI)-funded NIH Integrated Data 
Analysis Portal (NIDAP), also backed by Palantir Foundry. NIDAP provides NCI with a research-centric, 
open data infrastructure that connects systems across NCI (including High Performance Computing Data 
Management Environment [HPCDME], NIH’s Biowulf High Performance Computing [HPC], BTRIS and 
LabMatrix clinical sources, lab-specific share drives, and imaging storage and analysis software). NIDAP is 
a key part of the data modernization strategy at NCI and is used by 50+ PI groups and 800+ users. NIDAP 
connects widely used systems across NCI and enables researchers to access and combine high-compute 
analysis, imaging, clinical, and genomic data for the first time. NIDAP enables the reuse and 
development of logic (e.g., bioinformatics pipelines) and data resources (e.g., aggregated genomic 
sequencing data), which serves as the connective tissue for NCI from data storage to analysis and 
publication. NIDAP supports a wide variety of primary data types, including: - Omics data (e.g., NGS and 
non-NGS, including WES, RNA-seq) - Radiology and pathology imaging data (e.g., MRI scans, tumor 
slides) - Clinical data (e.g., clinical procedures, clinical tests and measurements, clinical outcomes 
[survival/death]) Access Model. All data in NIDAP is access controlled based on NCI’s direction. NIDAP 
propagates all NCI-configured data permissions throughout the platform, and across all user groups— 
enabling open access to general NCI data and tools while gating access to specific subgroups for select 
workflows and tools (e.g., a clinical research laboratory information management workflow for the 
Laboratory of Pathology or a patient-centric workflow for the Urologic Oncology Branch). These granular 
permissions secure all data at all times, including Personally Identifiable Information (PII) and Protected 
Health Information (PHI). These granular access controls enable researchers to securely share project-
specific data with collaborators across the NCI, at other ICs, and (upon request) with extramural 
institutions. Data Scope and Characterization. Specimen data integrated in NIDAP stems from tens of 
thousands of subjects, and include associated whole exome, whole genome, bulk, and single-cell RNA 
sequencing, epigenetic (e.g., methylation), other omics data, MRI imaging data, pathology slides and 
imaging analyses, and tumor samples. Samples were collected in accordance with NCI-specified research 
protocols, and in-platform access controls configured with NCI automatically dictate which users have 
permission to access and use what data. The integrated data asset can be analyzed and characterized at 
the individual sample, source subject, or cohort/population level. Data is updated and integrated 
automatically, ranging from every five minutes to nightly depending on user needs, and continues to 
expand to support new types with plans to include microbiome, animal modeling, and high throughput 
natural products screening data. Data Linkage. NIDAP dynamically links sequencing, imaging, and other 
data modes together through the platform’s configured ontology—a data model configured based on 
consultation with NCI SMEs. Data in NIDAP includes clinical outcomes (disease manifestation and 
progression, tumor growth rates, treatment response, etc.), all of which can be linked back to genomic 



   
   

   
   

     
   

   
 

 

 
 

   
   

   
  

   
   

  
 

         
 

  
     

  
  

  

 

variants and other inputs through the ontology. NIDAP thus facilitates the performance of meta-
analyses of multi-modal data (e.g., to identify all cancer patients in a certain age range with specific 
clinical outcomes and test values that also show positive expression of gene X) that would be otherwise 
be difficult or impossible. In addition to one-off analyses, NIDAP also facilitates multi-modal model 
creation and management on top of current data. MITRE mAbs DCP: A third resource that is a Closed 
Loop System (see response to Topic 1) is the MITRE monoclonal antibodies (mAbs) Data Collaboration 
Platform (DCP), also backed by Palantir Foundry. The MITRE Health FFRDC (on behalf of its sponsor, 
ASPR) is conducting an RWE study on the effectiveness of monoclonal antibody treatments for COVID-19 
using the DCP, in coordination with four Health System partners. Of particular interest to MITRE and its 
sponsor is the effectiveness and impact of monoclonal antibody treatments in the face of SARS-CoV-2 
viral evolution. The DCP facilitates inquiries on this topic through bidirectional communication between 
MITRE and its Health System partners: 1. MITRE analyzes deidentified clinical demographic and 
outcomes data from Health Systems to identify patients for which it would like COVID-19 RNA-Seq data. 
2. MITRE communicates the cohort of patients of interest back to its Health System partners, using 
Palantir Foundry’s capabilities to maintain provenance. 3. The Health System reidentifies those patients 
within their own commercial instance of Palantir Foundry (made available to the Health System under a 
Business Associate Agreement) and identifies corresponding COVID RNA samples to be sequenced. 4. 
The Health System ingests COVID RNA-Seq data into their commercial instance of Palantir Foundry, links 
it to the preexisting clinical data, deidentifies the entire dataset, and pushes it into the MITRE instance 
of Palantir Foundry. 

4. Any general comments related to critical resource gaps and opportunities to support NGS test 
development and validation (limit: 8000 characters) 

In our response above, we underscore that, in our experience, data—its quantity, its quality, and its 
appropriateness to the problem—is the greatest determinant of a data-related effort’s outcomes. We 
strongly urge NIH and FDA to center its strategy—to enable NGS test development, validation, and data 
interpretation as well as radiological tool development and clinical data interpretation using AI/ML— 
around an infrastructure to support data quality. 

Email: dkucz@palantir.com 

mailto:dkucz@palantir.com


  

  

     

  

   

  

  

  

   

  
 

  

    
 

    
  

   
  

 
  

    
   

    
   

    
 

   
   

 
   

   
   

  
  

    

ID: 1774 

Submit date: 11/1/2021 

I am responding to this RFI: On behalf of an organization 

Name: Ezekiel Maier 

Name of Organization: Booz Allen Hamilton 

Type of Organization: Other 

Type of Organization-Other: Consulting Firm 

Role: Other 

Role-Other: Support of Government AI/ML and Bioinformatics Initiatives 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

Advancing the use of artificial intelligence (AI) and machine learning (ML) for the analysis and 
interpretation of genomics and other health data 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

Accelerating the use of artificial intelligence (AI) and machine learning (ML) for the interpretation and 
analysis of health data, particularly genomics data, can drive enormous benefit for human health and 
disease. AI and ML can help researchers extract actionable insights from health data, particularly if an 
analytics ecosystem encourages 1) use of interpretable technologies, 2) adoption of transparent 
procedures, and 3) opportunities for broad cross-pollination of embedded experts. However, gaps and 
open questions about accessibility of real-world data and the transparency of AI/ML models may pose 
significant challenges to realizing these opportunities. Below we highlight critical gaps, provide context, 
suggest mitigation strategies, and list relevant Booz Allen experience. Gap: Lack of readily available, real-
world biomedical data for development of AI/ML models. Regulatory guidelines such as HIPAA (e.g., the 
Privacy Rule) aim to enforce controlled access to de-identified data. However, it is possible to re-identify 
and/or reveal sensitive health attributes from de-identified biomedical data. Therefore, these protective 
measures are insufficient to safeguard individual privacy. Moreover, uncertainty about regulatory 
guidelines and Institutional Review Board (IRB) review processes and paperwork that are critical for safe 
and ethical human subjects research, may thwart the pace and breadth of data sharing. Solution(s): To 
meet this challenge, NIH and FDA should take advantage of the opportunities provided by privacy-
preserving data mining (PPDM) techniques, methods that quantify and protect the trade-off between 
data utility and subject privacy. For example, Federated Learning is a privacy-preserving data mining 
technique that allows data to be available in a collaborative, accessible environment, while remaining 
secure in its original server. Federated learning works by training a machine learning algorithm on 
multiple local datasets contained in local nodes without explicitly exchanging data samples. A similar 
approach known as model-to-data enables the release of synthetic data for AI/ML model development, 
while withholding sensitive data in a secure private computational environment for model evaluation. 
Finally, differential privacy is a method in which a small amount of noise is added to the data in order to 



  
   

  
    

   
  

    
  

 
 
 

    
  

   
     

   
  

     
 

    
    

 
     

     
    

   
  

 
    

  
  

  
    

    

      
     

     
  

      
  

   
   

conceal the exact datapoints that comprise a specific dataset. Privacy-preserving data mining 
infrastructure development could enable 1) researchers to share more diverse datasets responsibly and 
widely, 2) regulators such as FDA to enhance the review of AI/ML-based software as a medical device 
without moving or exposing proprietary data used to train and validate the algorithms, and 3) allow 
central aggregation of data that could potentially accelerate AI/ML model training. Federated learning 
would minimize concerns about proprietary data breach by pharmaceutical firms, decrease overhead 
required to manage training and validation data submitted to the FDA, and ultimately accelerate 
regulatory review. For example, in the case of bioinformatics and advanced analytics tools developed 
and submitted for regulatory review, federated learning would enable FDA to better interpret sponsor-
generated data by running the NGS companion diagnostic model. Moreover, federated learning or a 
model-to-data architecture could enable researchers to train AI/ML models on real-world biomedical 
data to produce more applicable and ethical analytical tools. Booz Allen Experience: Booz Allen has a 
long track record of supporting federal partners in the biomedical research community with responsible 
and private data sharing and AI/ML development. For example, in partnership with a military health 
agency, Booz Allen developed a secure and scalable cloud-based platform for genomic data 
management and analysis. Booz Allen evaluated the technology landscape of PPDM techniques, 
collating published information about efficacy, trade-offs, and feasibility of implementation. Currently, 
Booz Allen is supporting a federal biomedical research agency to examine and benchmark existing 
commercial off-the-shelf (COTS) privacy-preserving record linkage (PPRL) technologies to enable 
integration of different data types (e.g., clinical and genomics) in a more private way. Gap: Lack of 
robust systems and norms to maximize transparency. Transparency in human research creates trust, 
particularly between research participants and researchers. Proactive communication about what data 
is collected and how it will be used as well as giving research participants increased control of their data 
builds upon that trust and reciprocity helps to maintain that trust. If gaps in research and AI/ML 
modelling transparency, including the collection and reporting of methods, assumptions, and data, go 
unaddressed, findings can be gravely distorted through selection bias, in which subpopulations decline 
to participate in the research enterprise for fear of consequences. Improving and maintaining trust 
requires novel mechanisms to support dynamic consent of subjects, increased transparency of datasets 
(e.g., origins, modifications, and processing), and increased explainability of ML models (e.g., clarity, 
interpretability, validation-readiness). Solution(s): Technologies that support standardized curation of 
metadata and automated logging of data modifications, such as Apache Atlas or Apache Taverna, should 
be integrated into organizational workflows. Whenever possible, industry standards, data ontologies, 
and best practices for data formats should also be used. The Global Alliance for Genomics and Health 
(GA4GH), a technical standard-setting organization for genomic data, has published a structured 
metadata tool, Automatable Discovery and Access Matrix (ADA-M), and Data Use Ontology (DUO) 
standards as well as consent codes that allow users to tag datasets with usage restrictions. Both 
standards can be used to support dynamic consent, a mechanism to enable different types of mutable 
research participant or patient consent. Altogether, these policies will allow for clear and transparent 
data usage, labor-saving automation, and streamlined technical interoperability within the larger 
healthcare ecosystem. Booz Allen Experience: Through our support of the military health agency cloud-
based genomics platform, we implemented the use of GA4GH consent codes, developed through 
GA4GH study of data use restrictions. These codes capture the conditions of data use and sharing as 
metadata. Mapping to GA4GH consent codes facilitates easier data access by relieving the burden of 
reviewing detailed consent documents per patient and study. The uploading researcher manually 



     
   

  
  

   
 

  
  

    
  

  
  

  
       

    
       
    

 
 

 
 

    
  

   
  

  
   

  
     

  
  

   
 

   
 

     
    

 
   

   
   

  
   

assigns consent codes for the data they have uploaded based on the subject consent form. In addition, 
we organized and ran the BioCompute Object (BCO) app-a-thon on a federal cloud-based platform for 
advancing precision medicine and informing regulatory science to encourage the adoption of the FDA-
recognized BioCompute specification for reproducible documentation of computational workflows. 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

Gap: Discoverability and Usability of Developed AI/ML Models It is challenging to locate and compare 
individual AI/ML applications for the analysis of omics, imaging, and health record data. Data scientists 
cannot use a tool without supporting documentation, such as versioning, performance metrics, and 
training approaches and data. However, the tools themselves are rarely packaged with the information 
required to make them useable. Results from AI/ML studies are often published in scientific journals, 
while the AI/ML tools that were used for discovery are often only available on individual laboratory 
websites rather than a centralized location. This approach makes the tools difficult to access, and 
performance difficult to reproduce, since there is no direct linkage of the established AI/ML model to 
the description and performance metadata provided in the publication. This challenge can result in a 
significant barrier to entry for scientists to begin using a tool, causing lost time searching for or 
recreating documentation or, even worse, not using a tool that would have faster and more accurate 
results. Solution(s): A public ModelOps and MLOps platform would enable centralized open sharing, use, 
and enhancement of AI/ML applications for analysis and interpretation of NGS and other real-world 
biomedical data. Such a platform would ease discovery, management, and deployment of containerized 
AI/ML algorithms. Within the platform AI/ML models should be paired with human 
readable/understandable metadata to describe the model, identify the process and datasets used to 
train and validate the model, metrics for model performance, and instructions for executing the model, 
including details such as hardware recommendations and data requirements. A cloud-based ModelOps 
platform also has the advantage of facilitating collaborative research within and across groups not only 
by providing a shared repository for tools and data, but also a standardized environment for execution 
and benchmarking. Booz Allen Experience: Booz Allen has demonstrated success in the establishment of 
AI/ML development platforms. One such platform called Modzy, which is described in greater detail in 
Topic 3, enhances developed AI/ML model portability, scalability, and discovery. In addition, Booz Allen 
supports community engagement on a federal cloud-based biomedical informatics platform, which 
offers more than 130 publicly available bioinformatics and AI/ML applications to empower the 
community of experts to advance precision medicine and inform regulatory science. Gap: Availability of 
Linked Multi-Modal Real-World Data Representative of Diverse Populations The need for accessible real-
world data is critical because AI/ML modelling is powered by large volumes of diverse high-quality data. 
Linked omics, medical images, and health records, collected from the same human subjects is necessary 
to enable integrative advanced analytic analysis that can discover hidden patterns and novel 
biomarkers. These novel discoveries can lead to new diagnostics and treatments for improving human 
health. Moreover, linked data representative of diverse populations is needed to ensure AI/ML models 
are not overfit to better characterized populations. Currently, such available large-scale representative 
linked multi-modal real-world datasets are lacking in biomedical research community. One workaround 
approach often utilized by the community is to leverage genomics data from a reliable reference data 
set, like the 1000 Genomes Project, paired with generated synthetic phenotypic data. However, 
generated synthetic phenotypes are often not representative of the underlying molecular mechanisms. 



  
   

    
  

   
 

   
   

   
  

   
    

    
   

   
 

    
   

     
    

    
  

 
 

   
   

   
   

     
    

 
  

 
    

    
   

  
   

   
    

  
    

  

Solution(s): Capabilities for generating synthetic healthcare record data have advanced significantly with 
generative adversarial networks (GANs). GANs, a deep learning algorithm, have been used to generate 
new synthetic data that maintains the statistical properties of the real-world data used for training. In 
addition to synthetic health record generation, recent publications have explored the use of GANs to 
generate synthetic human genomes. An article in PLOS Genetics 
(https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009303) found promise in 
"artificial genomes" that retained the complexity and relationships of the original data. GANs can be 
deployed on NHLBI TOPMed and NCI Data Commons data to ensure diverse sources and types of 
synthetic data. Continued advancement of GAN-based synthetic real-world data generation, and the 
availability public APIs for on-demand generation of linked multi-modal synthetic real-world data will 
accelerate AI/ML model development and benchmarking. Booz Allen Experience: Booz Allen has 
explored the approaches, tradeoffs, and applications of synthetic data generation in collaboration with 
the Veterans Health Administration (VHA) and National Institute of Standards and Technology, 
documented in a Towards Data Science post (https://towardsdatascience.com/synthetic-data-at-the-
vha-8124989c7183). Booz Allen has also organized and run 4 public bioinformatics and AI/ML challenges 
on a federal cloud-based platform for advancing precision medicine and informing regulatory science 
that utilized synthetic data, including one modeling risk factors for COVID-19. In this challenge, 
participants developed AI/ML models to identify risk and protective factors for severe COVID-19 illness 
and predict COVID-19 outcomes for a large cohort of synthetic Veteran health records. During the post-
challenge phase, Booz Allen and its government partners are evaluating the performance of winning 
models on two synthetic datasets generated by different tools, and on real de-identified Veteran health 
records. This analysis will highlight the strengths and limitations of training AI/ML models on synthetic 
health record data. Gap: AI/ML Training and Development Engagement and Education As AI/ML 
platforms and algorithms become increasingly available, far-reaching benefits to NGS analysis and 
interpretation could be achieved via an increase in AI/ML adoption activities and training for the 
biomedical informatics workforce. AI/ML is crucial to the extraction of large volumes of linked genomic, 
imaging, and electronic health record data, as well as the downstream integrative analysis, but 
knowledge of what tools are available, how to use them, the advantages and limitations of using 
popular tools, and appropriate interpretation of the results is still needed in the workforce to get 
widespread, meaningful benefit to the research community. Solution(s): We recommend the 
development of a publicly available flexible AI/ML knowledge assessments and training tailored to the 
specific needs and workflows of the biomedical informatics workforce. This should include personalized 
data science training, which emphasizes analytics skills and knowledge needed for specific roles, and 
events such as cross-cutting symposia, lunch seminars, online training/forums, and hackathons. These 
events provide the workforce with opportunities for continuous training and de-silo experts. In addition, 
advanced training should be offered to empower the use of cutting-edge AI algorithms, such as novel 
deep learning approaches, and specialized computing infrastructure, such as graphics processing units 
(GPU) and field-programmable gate arrays (FPGA). Use of this hardware can significantly accelerate 
model training and inference to make research possible that would previously have likely been 
considered too resource-intensive or time-consuming. For example, GPU accelerated deep learning 
models are being used to improve genetic variant calling (e.g., DeepVariant) and associate omics 
markers with features in medical images (e.g., radiogenomics). Wider exposure and knowledge of these 
advanced approaches will enable data scientists and researchers from disparate backgrounds to develop 
novel pipelines to better extract complex patterns from large data sets. Booz Allen Experience: Booz 

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009303
https://towardsdatascience.com/synthetic-data-at-the-vha-8124989c7183
https://towardsdatascience.com/synthetic-data-at-the-vha-8124989c7183


  
    

   

 
 

  
   

  

    

    
   

    
    
 

  
  
     

    
   

     
   

   
  

   
 

  
    

    
   

  
 

  
   

 
  

   
 

    
   

    
  

 

Allen partnered with a federal biomedical library to design and implement a data science training 
program to build a workforce for data-driven research and health. Staff were trained on topics ranging 
from high-level overviews to 120-hour deep dives. Assessments of data science expertise were gathered 
prior to and after the trainings to identify impactful topics for continued learning and development. 
Booz Allen also developed a "Data Academy" for a federal public health agency, utilizing commercial 
offerings as well as our own novel content to deliver learning pathways via self-paced, on-demand e-
learning. This was nominated for an agency-wide award. Booz Allen has also trained federal health 
clinicians on kidney disease prediction AI/ML models we developed to further patient health, patient 
care, and patient-centered outcomes research. 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 

As discussed in topic 1, there is a lack of readily available, real-world biomedical data for development of 
AI/ML models. The lack of clear and effective standardized methods for de-identification of real-world 
data has limited the sharing and accessibility of linked omics, medical imaging, and health record data 
that is necessary to advance the application of AI/ML to the interpretation of biomedical data. Nvidia 
has open-sourced a standalone Python library, Nvidia Federated Learning Application Runtime 
Environment (NVFlare) (https://nvidia.github.io/NVFlare/), that provides a framework to easily deploy 
and operate a federated learning environment for AI/ML model development. The federated learning 
environment deployed by NVFlare ensures data is protected through at least three mechanisms: 1) 
secure client server communications by creating an explicit and constrained network among the 
constituent institutions, 2) using differential privacy techniques to exchange only a subset of model 
parameters during each update rather than sensitive data, and 3) using homomorphic encryption to 
allow computation on encrypted exchanged model parameters. This Python library is distributed under 
the Apache License 2.0 which enables commercial use, distribution, and modification. As strategic 
partners, Booz Allen and Nvidia’s strong ties enable us to enhance and deploy NVFlare to advance the 
application of AI/ML to the interpretation of real-world biomedical data via federated learning. NIH and 
FDA can utilize the NVFlare Python library to deploy federated learning environments to empower 
research and enable regulatory review using sensitive biomedical data. As discussed in topic 2, 
discovery, reuse, and enhancement of developed AI/ML models for analyzing and interpreting omics, 
medical imaging, and electronic health record data is difficult because models and metadata are often 
managed separately and dispersed to different scientific journals and laboratory websites. To improve AI 
and ML model management, governance, and discoverability, Booz Allen developed Modzy 
(https://www.modzy.com), a platform to accelerate AI/ML adoption and deployment. Modzy offers 1) a 
common model marketplace of vetted, open-sourced AI/ML algorithms; 2) an AI/ML collaboration 
environment where algorithms can be rapidly shared and enriched across permissioned users; and 3) an 
AI/ML governance environment to seamlessly deploy, use, and monitor models. To improve 
discoverability, transparency, and reuse, models managed by Modzy are tagged with relevant metadata 
including a description, training and validation procedures and data, and performance metrics. An 
example AI model managed in the Modzy marketplace is DarwinAI’s COVID-NET model, which is a 
convolutional neural network that uses chest X-rays to predict the likelihood of the patient being 
infected with COVID19 pneumonia, regular pneumonia, or being healthy. NIH and FDA can accelerate 
the application of AI/ML to the interpretation of NGS data and multi-domain data by making models and 
model metadata more discoverable, transparent, and reusable by providing Modzy as a solution for 
managing models. 

https://nvidia.github.io/NVFlare/
https://www.modzy.com/


        
 

   
   

    
  

   
  

  
 

    
    

   
   

  
   

   
  

     
    

   
 

 
  

   
  

  
  

     
   

  

 

4. Any general comments related to critical resource gaps and opportunities to support NGS test 
development and validation (limit: 8000 characters) 

Booz Allen Hamilton (Booz Allen) is pleased to submit this response to the National Institutes of Health 
(NIH) and U.S. Food and Drug Administration (FDA) for the Critical Resource Gaps and Opportunities to 
Support Next Generation Sequencing (NGS) Test Development Request for Information (RFI). Our 
response summarizes critical gaps and our capabilities for advancing the analysis of NGS data, including 
the use of AI/ML. Booz Allen is the largest provider of U.S. public sector AI services with approximately 
30% of market share. In addition, we hold the largest AI-focused contracts in the Department of Health 
and Human Services (HHS) and Department of Defense (DoD). We have more than 120 AI engagements 
across the federal government, which includes 43+ AI engagements across civilian federal agencies. We 
hold 63 patents in AI, ML, and deep learning. In addition to our AI expertise, Booz Allen has a wealth of 
bioinformatics experience, having supported numerous large omics research programs and initiatives 
across the federal government. Since 2011, we have supported a national genomic medicine research 
program run by a federal healthcare agency. Over 850,000 research subjects have enrolled in this 
program which has discovered novel biomarkers of many diseases impacting veterans, including post-
traumatic stress disorder (PTSD) and kidney disease, through the integrative analysis of genotypes, 
longitudinal health records, and behavioral health surveys. Booz Allen provides a broad range of support 
to the research program, including data standardization and harmonization, bioinformatics workflow 
development, and analytics. In support of a military health agency, Booz Allen developed a secure and 
scalable cloud-based platform for genomic data management and analysis. This platform provides 
capabilities for storing, processing, and sharing genomic data, and integrating health outcomes data in 
predictive models. Since 2017, Booz Allen has supported a secure, collaborative, cloud-based platform 
for advancing precision medicine and informing regulatory science. Our team was responsible for 
boosting engagement and increasing the scientific impact of the platform by organizing public 
crowdsourcing competitions which incentivize novel algorithmic development and provide an 
independent source for benchmarking tool performance. Finally, Booz Allen is performing several 
genome-wide association study analyses in support of a federal biomedical research agency. These 
analyses utilize genotyping, metabolomic, epigenetic, gene expression, and phenotypic data to identify 
novel biomarkers. As a partner of both NIH and FDA for more than 15 years, we bring the mission 
knowledge, expertise, and understanding required for addressing critical gaps to advance the use of 
AI/ML for the analysis and interpretation of genomics and other health data. 

Email: Maier_Ezekiel@bah.com 

mailto:Maier_Ezekiel@bah.com


  

  

    

  

   

  

  

  

  
 

      
 

   
  

   
  

  
   

   
  

 
  

    
      

  
    

    
   

   
 

     
   

   
  

     
 

   
   

ID: 1777 

Submit date: 11/1/2021 

I am responding to this RFI: On behalf of an organization 

Name: Jeremiah McDole 

Name of Organization: Bio-Rad 

Type of Organization: Industry (Biotech/Device/Pharmaceutical Company) 

Role: Other 

Role-Other: Marketing 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

In light of the currently stated situation, "The lack of well-characterized and widely available somatic and 
germline samples makes NGS test and methodology validation across laboratories difficult" we propose 
the launch of an NGS proficiency testing program. While the College of American Pathologists (CAP) has 
long offered valuable proficiency testing, the program we propose would be modeled after what is 
currently implemented by the American Society for Histocompatibility and Immunogenetics (ASHI) for 
applications such as chimerism and engraftment monitoring. Blinded samples distributed to 
participating laboratories would be characterized via ddPCR in order to establish a "ground truth" 
measurement of genetic target frequency given the superior sensitivity, precision, and reproducibility of 
this platform vs. NGS. Samples would be sent to labs for testing via their NGS system(s). NGS results 
received back from participating labs would be set against their respective ddPCR benchmarks. A 
combined readout of all de-identified lab results would generate a data range to provide labs a view of 
+/- (or NC) "drift" from the established benchmarks. This view would provide a lab with the opportunity 
to implement self-correction, if needed. This approach has merit given synthetic reference sample 
providers, such as SeraCare, utilize ddPCR to create their NGS reference materials due to the previously 
stated high sensitivity, precision and reproducibility of the ddPCR platform vs. NGS. The type of 
sample(s) to be distributed to labs for proficiency testing may be a complex issue. Solid tumor 
specimens, for example are often rare, precious, and importantly, heterogeneous. To better replicate 
the heterogeneity found within real clinical samples, synthetic samples could be modeled after one or 
more well characterized clinical samples. To create such a product, a company/ organization/ 
investigator could perform "high resolution" genetic mapping of multiple tissue slices/slides taken from 
a clinical sample using both NGS and ddPCR to capture breadth of mutations presence and depth of 
genetic mutation frequency. These genetic mutations and their precise frequencies can be recreated per 
clinical tissue slice/slide and then incorporated into the above stated proficiency testing schema. Such 
an exercise could, among other things, reproduce diagnostic "edge cases" and lead to a better 
understanding of how reliability labs can make correct calls when presented with these challenging 
samples. Depending on the outcome, data from these edge case testing results may point to the need 
for greater utilization of ddPCR for reflex testing. 



 
 

    
        

  

 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 
4. Any general comments related to critical resource gaps and opportunities to support NGS test 

development and validation (limit: 8000 characters) 

Email: Jeremiah_Mcdole@bio-rad.com 

mailto:Jeremiah_Mcdole@bio-rad.com


  

  

    

  

   

  

  

  
 

    
 

   
 

   
  

   
  

   
   

 
    

  

   
     

    
  

 
  

  
  

  
   

   
    

  
  

  

    

ID: 1779 

Submit date: 11/1/2021 

I am responding to this RFI: On behalf of an organization 

Name: Dr. Giovanna Bucci 

Name of Organization: Palo Alto Research Center 

Type of Organization: Industry (Biotech/Device/Pharmaceutical Company) 

Role: Investigator/Researcher 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

The Palo Alto Research Center, Inc (PARC), in collaboration with the Massachusetts Institute of 
Technology (MIT) identifies an area of intense research interest in the field of single-molecule protein 
sequencing. Whole-proteome sequencing and profiling of the vast repertoire of cell types is key to 
enhance fundamental understanding of living systems. Advances in hybrid and domain-aware AI (e.g., 
where geometric and physical modeling meet machine learning and data analytics) have opened 
unprecedented opportunities in basic science and medical diagnostics/therapeutics. Since its first 
demonstration, nanopore sensing has dramatically advanced, ultimately achieving the goal of single-
molecule DNA sequencing. This technique has the potential to serve as a generic tool for the analysis of 
biomolecules, including proteins. Nanopore-based protein sensing is in its infancy, facing challenges 
unique to proteins and proteomics. Proteins span a large range of sizes and have a stable three-
dimensional folded structure. In contrast to nucleic acids, the backbones of peptides are not naturally 
charged, complicating the possibility of electrophoretic threading them into nanopores. In addition, 
proteins are composed of combinations of 20 different amino acids instead of 4 nucleobases, further 
complicating the task of relating the ionic current signals to the amino acid sequence. Long-term 
opportunities for high-throughput, single-molecule sequencing range from studying the causes of 
neurological diseases like Parkinson’s and Alzheimer’s to earlier diagnosis and more effective treatment 
of cancer. Protein nanopores have shown promise for identifying amino acids and post-translational 
modifications (PTMs). For example, Ouldali et al. recently showed that 13 of the 20 standard amino 
acids are distinguishable based on their current signals using an aerolysin nanopore [1]. The detection of 
PTMs, which serve as biomarkers of cell states and diseases [2-3], has also been achieved with nanopore 
sensors [4-8]. Controlling protein translocation through the sensor remains a significant challenge. Initial 
studies demonstrate a protein-tethered oligonucleotide being captured by the nanopore and unfolding 
because of the pulling force. The charged oligonucleotide respond to the electric field and drives the 
protein through the nanopore via electrophoresis. This method, however, generates exceedingly fast 
translocation events ( 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 



        
 

   

 

4. Any general comments related to critical resource gaps and opportunities to support NGS test 
development and validation (limit: 8000 characters) 

Uploaded File: https://osp.od.nih.gov/wp-content/uploads/rfi2021_ngs/uploads/GiYIsOtAsz.pdf 

Email: gbucci@parc.com 

https://osp.od.nih.gov/wp-content/uploads/rfi2021_ngs/uploads/GiYIsOtAsz.pdf
mailto:gbucci@parc.com


  

  

    

  

    

  

  

  

  
 

   

     
 

   
      

   
   

   
      

  
    

 

   
 

    

     
   

   

          
 

 

ID: 1780 

Submit date: 11/1/2021 

I am responding to this RFI: On behalf of an organization 

Name: Anant Madabhushi 

Name of Organization: Case Western Reserve University 

Type of Organization: Academic Institution 

Type of Organization-Other: 

Role: Investigator/Researcher 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

artificial intelligence, radiomics, pathomics, computational imaging, precision medicine 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

Integration of quality control and assessment approaches into the data curation process rather than 
simply "dumping" a set of data for public use Reference patient cohorts to be able to test harmonization 
and correction approaches for each modality within radiology (MRI, CT) etc as well as for different 
acquisition types Making it easier to share curation and annotation efforts for public repo cohorts -
maybe leverage OHIF etc and encourage investigators to have a one-click option to make their 
annotations or curated cohorts available within a large pool. Else each group using a dataset ends up 
reinventing/redoing the same wheel. Focus on making datasets and clinical variables available for non-
cancer, non-HLB diseases as well. Need for individual institutes within NIH to make datasets generated 
though NIH funded projects publicly available 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 

Need for multimodal, multiscale datasets - Cooperative Oncology groups to make clinical trial datasets 
(imaging) more easily available to the research community - Slide scanning of previously accrued clinical 
trial cohorts (cooperative oncology group conducted clinical trials) 

4. Any general comments related to critical resource gaps and opportunities to support NGS test 
development and validation (limit: 8000 characters) 



  

  

    

   

   

  

  

  
 

   

     
 

    
 

    

  
     

 
     
   
  

   
 

   
 

 
 

  
     

 
   

  

        
 

 

ID: 1783 

Submit date: 11/1/2021 

I am responding to this RFI: On behalf of an organization 

Name: Jesse Tetreault 

Name of Organization: Nvidia 

Type of Organization: Industry (Biotech/Device/Pharmaceutical Company) 

Role: Investigator/Researcher 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

Accelerated Computing; GPU Computing; Accelerated Genomics Analysis 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 

In clinical genomics, deep learning algorithms are used to process large and complex genomic datasets. 
The tools and infrastructure is targeted towards tasks that are impractical to perform using human 
intelligence and error prone when addressed with standard statistical approaches. The availability of 
large datasets for training like large functional genomics datasets, in conjunction with advances in AI 
algorithms and in the GPU systems used to train them, is driving a surge in productivity. A turnkey 
software tool designed for enabling clinical research in NGS is NVIDIA Clara Parabricks. It delivers 
powerful acceleration to primary, secondary, and tertiary analyses of genomic data. Based on GATK, 
Clara Parabricks gives unmatched secondary analysis performance and throughput. AI systems are being 
increasingly used in various fields within clinical diagnosis and NGS can benefit greatly from the recent 
advancements in AI and ML. One example can be the use of computer vision techniques for 
identification of functional regulatory elements i.e. recurrent motifs in DNA sequences in the human 
genome. This implementation is analogous to how pixel patterns are detected in images by 
convolutional neural networks. Many AI and ML techniques have also been adapted to address the steps 
involved in clinical genomic analysis - including variant calling, genome annotation, variant classification, 
and phenotype-to-genotype correspondence. Standard variant-calling tools are prone to systematic 
errors. NVIDIA Clara Parabricks has Google’s DeepVariant tool that uses a deep neural network trained 
directly on read alignments which outperforms standard tools on some variant-calling tasks. 

4. Any general comments related to critical resource gaps and opportunities to support NGS test 
development and validation (limit: 8000 characters) 

Email: jtetreault@nvidia.com 

mailto:jtetreault@nvidia.com


  

  

    

  

   

  

  

  
 

      
 

   
 

    
   

   
   

   
  

   
    

  
     

  
    

 

    
   

   
    

 
   

      
   

  
   

    
      

ID: 1784 

Submit date: 11/1/2021 

I am responding to this RFI: On behalf of an organization 

Name: Dr. Sookyung Kim 

Name of Organization: Palo Alto Research Center, Inc. (PARC) 

Type of Organization: Industry (Biotech/Device/Pharmaceutical Company) 

Role: Investigator/Researcher 

Domain of research most important to you or your organization (e.g. cognitive neuroscience, 
infectious epidemiology): 

1. Development of reference samples, tools and infrastructure for clinical and translational research 
using NGS (limit: 8000 characters) 

2. Application of AI/ML to the interpretation of NGS data and multi-domain data (limit: 8000 
characters) 

Precision medicine aims to design and optimize the pathway for diagnosis, therapeutic intervention, and 
prognosis using large multidimensional biological datasets that capture individual variability in genes, 
function, and environment. However, capturing the variability of an individual genetic structure requires 
an accurate assessment of 3D structure from available 1D protein sequences of individual genes. 
Specifically, predicting protein folding and structural genetic mutation are critical in the drug design for 
personalized treatment of cancer patients as there are 10,000-100,000 mutations that can be simulated. 
It is therefore important to maximize the efficiency of the treatment on an individual basis. A valuable 
way to address cancer treatment is to correlate the disease with the structural genetic mutation of each 
patient. Understanding the 3D structure of proteins also is a critical yet challenging task in the drug 
discovery process. When a drug molecule binds with the target protein, the form of their 3D structure 
plays a vital role in determining the binding affinity between the two. Another challenge arises because 
many protein-protein interactions involve conformational changes (structural changes) upon binding 
with its partner or even the coupled folding or refolding of disordered segments. Moreover, in the drug-
target binding scenarios, the disordered protein segments are frequently involved in transient protein-
protein interaction. In this case, both the structural prediction of the protein-protein complex and 
binding affinities become more complicated. Despite the progress of experimental crystallography in 
recent years, the experimental determination of the 3D structure of protein continues to be a 
challenging task. It remains impossible to experimentally determine all proteins in a cell. As 3D protein 
structures are not available, conventional structural-based drug design processes mostly rely on random 
high-throughput screening. Such methods scan protein datasets and collect multiple molecules to test 
their binding affinity with a given target protein based on structural similarity between molecules in the 
database and the target drug molecule. The hit rate for such methods is poor: e.g., for one thousand 
scans performed on a DNA-related dataset, the hit rate was found to be 0-0.01%. An important 
prerequisite in the process of structural drug discovery and precision medicine is the availability of an 
accurate and reliable modeling approach for the 3D protein structure and eventually the availability of 
co-crystal structures (i.e., the structure of the crystallized drug-target complex). The dramatic advent of 



  

     
    

  
  

   
       

 
    

  
 

   
  

    
  

  
  

   

    
        

 

   

  

 

 

high-performance computing and artificial intelligence has opened doors for the new drug discovery 
paradigm and precision medicine. Data-driven structural prediction of protein structure using AI has the 
potential to make breakthrough impacts in the drug discovery process and could save the U.S. medical 
and pharmaceutical sectors up to $100 billion per year. AI-driven protein structural prediction is making 
breakthroughs and changing the paradigm of the drug discovery process, however, most supervised 
learning-based machine learning algorithms suffer from the lack of interpretability of models and clinical 
data transparency issues of transparency of clinical data. When it comes to something as critical as 
developing a new pharmaceutical, AI cannot be a black box that gives answers that cannot be verified or 
interrogated. The ML model must be developed to provide reliable accuracy and human-level 
explainability in making predictions. We also need transparency of the genetic data that the model uses 
(e.g., the source, distribution, and methods used to pre-process data). Therefore, the end-users of AI 
algorithms, such as healthcare professionals or physicians, should easily understand how AI tools 
operate and reach conclusions before they practice AI tools in clinical environments. Because AI and ML 
research is a breathtakingly fast-growing area, there should be strategic and government-wide programs 
to integrate AI with structure-based drug discovery, taking into account ethics, diversity, equity and 
inclusion, and clinical practice. NIH as an organization is in the best position to lead such a program. For 
the research prototyping of AI-based drug discovery, PARC is interested in developing data-efficient 3D 
protein structure prediction models using cutting-edge algorithm development from natural language, 
third-wave AI techniques, and with a robust, interpretable analysis system. 

3. Existing resources that could be leveraged to fill resource gaps (limit: 8000 characters) 
4. Any general comments related to critical resource gaps and opportunities to support NGS test 

development and validation (limit: 8000 characters) 

Uploaded File: https://osp.od.nih.gov/wp-content/uploads/rfi2021_ngs/uploads/bsGgmHfvSi.pdf 

Description: PARC AI-enabled-drug-discovery 

Email: sookim@parc.com 

https://osp.od.nih.gov/wp-content/uploads/rfi2021_ngs/uploads/bsGgmHfvSi.pdf
mailto:sookim@parc.com
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