Overview of Gene Drive Technology and Applications

Anthony James, PhD, UC Irvine

NExTRAC: Gene Drives in Biomedical Research Working Group, November 9-10, 2020

What is gene drive?

Gene drive: inheritance bias for a specific genotype (most common in diploid organisms during sexual reproduction)

circumvention of Mendelian patterns of inheritance (random segregation)

Gregor Mendel 1822-1884

What is gene drive?

Drive mechanism: underlying biological drive feature

Drive system: final synthetic product that achieves inheritance bias

Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California rvine. CA 92697-3900. USA

What are possible gene-drive mechanisms?

Genetic phenomena

'chromosome mechanics'
 competitive displacement
 reduced heterozygous fitness
 under-dominance
 hybrid sterility

Underdominant system (Adapted from Davis et al 2001)

What are gene-drive mechanisms?

meiotic drive segregation distorters (SD) gene conversion

DNA-break induced repair

nuclease-mediated

What are gene-drive mechanisms?

Infectious and infectious-like agents

extracellular and intracellular symbiotic microorganisms viruses cytoplasmic incompatibility (*Wolbachia* species)

paratransgenesis

Transposons

conservative

replicative

What are some useful concepts?

Endogenous:

Genetic or epigenetic element originating from or common to the wild-type of the species of interest

Exogenous:

Genetic or epigenetic element *not* originating from or common to the wild-type of the species of interest

Vertical transmission:

Genetic or epigenetic element passed from parent to progeny (germ cells, *fomites*)

Horizontal transmission (transfer):

Genetic or epigenetic element passed from one organism to another (same or different species)

What are the genetics of 'conversion-like' drive?

Genotypic and phenotypic consequences:

Mendelian inheritance

- I, C: alternate alleles
- I: dominant
- C: recessive

Test cross

Χ

X

50%

Gene drive

×

1/1

C/C

All I/I

What are the genetics of gene drives?

Different types of crosses need to see evidence of other mechanisms:

competitive displacement reduced heterozygous fitness under-dominance hybrid sterility

extracellular and intracellular symbiotic microorganisms viruses *Wolbachia* species paratransgenesis Cytoplasmic incompatibility

What are some gene-drive system features?

Autonomous systems (also known as 'autocatalytic'):

carry all the genetic information needed to self-mobilize or cause an inheritance bias tightly-linked in a *cis* configuration as part of a single construct

'Split' systems (physical, temporal separation): components are at separate loci on homologou or heterologous chromosomes, only function when all components are in the same cell

What are some gene-drive system features?

Low (no) threshold dynamics:

single releases of small numbers of gene drive organisms result in every organism in the population carrying the drive system

High threshold dynamics: gene-drive organisms must be released above a minimal frequency in relation to the target population (either by one-time releases of larger numbers of mosquitoes or a by succession of serial releases)

What are some gene-drive system features?

How do you make an autonomous Cas9 drive system?

*Homology arms as short as 100bp have worked with cargoes (≤5kb) in *Drosophila melanogaster* if the primary construct is linearized *in vivo* (Kanca *et al.*, 2019)

Images courtesy of V. Gantz and E. Bier

How does an autonomous Cas9 drive system work?

Primary integration into chromosome

How does an autonomous Cas9 drive system work?

Gene drive (interchromosomal)

Images courtesy of V. Gantz and E. Bier

What can gene drive be used for?

Introduce favorable traits into populations

E.F. Knipling

Population suppression

Population replacement (modification/alteration)

C. F. Curtis

Likely to work best in organisms with short life cycles

What are possible Environmental/Ecological merits?

Invasive species

Mosquitoes in Hawai'i

Rats on islands

Fish in lakes

What are possible Agricultural merits?

Favorable traits

Pest species

Cotton: Pink Bollworm

Pectinophora gossypiella

Disease resistance Citrus: Mexican fruit fly

Many: Drosophila suzukii

What are possible public health merits?

Control/alter:

Vectors

Pathogens

Reservoirs

What are some challenges?

Space and time

Regional vs global impacts Human vs evolutionary time scales

Safety and efficacy

Consequences of target and non-target effects Consequences of drive or cargo failures

Science and society

National and international regulatory realms Individual vs community consent

What are some mitigating measures adopted by the research community?

Potentially stringent confinement strategies for gene drive research

Multiple stringent confinement strategies should be used whenever possible.

	ТҮРЕ	STRINGENT CONFINEMENT STRATEGY	EXAMPLES
	Molecular	Separate components required for genetic drive	sgRNA and Cas9 in separate loci (8)
		Target synthetic sequences absent from wild organisms	Drive targets a sequence unique to laboratory organisms (3,4,8)
	Ecological	Perform experiments outside the habitable range of the organism	Anopheles mosquitoes in Boston
	Perform experiments in areas without potential wild mates	Anopheles mosquitoes in Los Angeles	
	Reproductive	Use a laboratory strain that cannot reproduce with wild organisms	Drosophila with compound autosomes*
	Barrier	Physical barriers between organisms and the environment	Triply nested containers, >3 doors (6)
		 Remove barriers only when organisms are inactive 	Anesthetize before opening (6)
		 Impose environmental constraints Take precautions to minimize breaches due to human error 	Low-temperature room, air-blast fans Keep careful records of organisms, one investigator performs all experiments (6)
	*An example of rep	roductive confinement would be Drosophila laboratory st	rains with a compound autosome, where both copies

*An example of reproductive confinement would be *Drosophila* laboratory strains with a compound autosome, where both copies of a large autosome are conjoined at a single centromere. These strains are fertile when crossed inter se but are sterile when outcrossed to any normal or wild-type strain because all progeny are monosomic or trisomic and die early in development.

A few thoughts:

Review and reconcile past efforts: many discussion/publications available already

Strive for consensus: adopt unified language; facilitates adoption of guidelines

No 'one-size-fits all' solutions: genetic plasticity, dispersal, reproductive capacity

Consider biology, not labels: avoid simplistic classifications

Be precise in language: avoid jargon and catch-phrases

Do not over-regulate, better to amend than revise

Lack of knowledge never an answer to solving complex problems

Thank you!

Questions and discussion!